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Why do I care about this problem?

Complexity may have diverse reactions
People want to show problems are easy/hard
My first work in the polynomial hierarchy
Motivated Kristoffer Hansen to do research for life
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History

2004: PhD thesis claimed to solve the problem
2008: Outlined proof was proven incomplete
2009: Example showed that the proof was wrong
2011: Alternative approach was proven to insufficient
2013: Weaker result than the claimed solution was proven
2017: Characterization of how far from true the claim was
2023?: The original claim will be proven to be true

Raimundo Saona Complexity of Concurrent Reachability Games



Introduction
Hardness

Possitive results

Purgatory(n = 7, m = 9)

Consider the following repeated game.
Lucifer and Dante give a number in {1, 2, . . . , 9}
If Dante’s number is higher than Lucifer’s, Dante goes to hell
If both numbers coincide 7 times in a row, Dante wins
In any other case, they keep playing

Raimundo Saona Complexity of Concurrent Reachability Games



Introduction
Hardness

Possitive results

Concurrent Reachability Games

A Concurrent Reachability Stochastic Game is a two-player game
denoted G = (V,A1,A2, δ) consisting of

the set of vertices V
the target vertex 1 ∈ V
action sets for each player A1 and A2

the transition function δ : V ×A1 ×A2 → ∆(V)
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Concurrent Reachability Games

The value is defined by

val(v) := sup
σ

inf
τ
P(σ,τ)

v (∃i ≥ 1 Vi = 1) .

Remark
There exist stationary ϵ-optimal strategies for both players.

Definition (Approximation of the value)
Given ε > 0 and a game G, compute the value vector up to ε.
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History: Approximating the value

2004: Claimed complexity TFNP, guessing strategies
2008: Outlined proof was proven incomplete
2009: ε-optimal strategies need exponential space
2011: Value iteration takes doubly exponential time
2013: Complexity TFNP[NP] was proven
2017: Characterization of complexity of ε-optimal strategies
2023?: Complexity TFNP will be proven
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Sketch proof: Claim

Game G

Safety MDP Gσ

valGσ(·)

Reachability MDP Gτ

valGτ (·)

decide σ, τ are ε-optimal

guess σ guess τ

approximate approximate
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How wrong could this proof
be?
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Hardness of strategies

Theorem (Required patience [HIM11, Theorem 10])
Suppose n is sufficiently large and m ≥ 2. Let ε = 1 − 4m−n/2.
Then, all ε-optimal strategies of Purgatory(n, m) have patience at
least 2mn/3 .

In other words, ε-optimal strategies require exponential space in
binary representation.

Remark
For the Purgatory(n = 7, m = 9), we have that 2mn/3 ≥ 2168.
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Value iteration

Assign value 0 to all states.
Assign value 1 the target 1.
In each step, update the value of a state, assuming
continuation values.

Remark
Value iteration is known to take at least exponential time, even in
Markov Chains.
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Hardness of value iteration

Theorem (Required steps of value iteration [HIM11, Corollary 9])

Let n be even. Applying less than 2mn/2 iterations of the value
iteration algorithm to Purgatory(n, m) yields a valuation of the
initial position of at most 3m−n/2, even though the actual value of
the game is 1.

In other words, ε-optimal values can be computed through Value
Iteration only after doubly exponentially many steps.

Remark
For the Purgatory(n = 7, m = 9), we have that 2mn/2

= 22187.
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Can we do anything?
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Best upper bound so far: TFNP[NP]

Theorem ([FM13, Theorem 1])
Approximating the value of Concurrent Reachability games has

polynomial size guess
polynomial time verifier using an oracle of a problem in NP

In other words, the problem is in TFNP[NP].
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Sketch proof

Game G

Safety MDP G⟨σ⟩

MC G⟨σ⟩,τ(⟨σ⟩)

valG⟨σ⟩,τ(⟨σ⟩)(·)

Reachability MDP G⟨τ⟩

MC Gσ(⟨τ⟩),⟨τ⟩

valGσ(⟨τ⟩),⟨τ⟩(·)

decide ⟨σ⟩, ⟨τ⟩ are ε-optimal

guess ⟨τ⟩

ask σ(⟨τ⟩)

approximate

guess ⟨σ⟩

ask τ(⟨σ⟩)

approximate
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Floating point

Consider a non-negative dyadic rational number of the form

m2−e ,

where m ∈ {2b−1, 2b−1 + 1, 2b−1 + 2, . . . , 2b − 1} for some b ≥ 1.
The floating point encoding is ⟨1b, bit(m), bit(e)⟩, which is unique
for a fixed precision b. Denote the set of floating points with
precision b by F(b).
Examples

1, with encoding size 3
2−100, with encoding size 9
1 − 2−100, with encoding size 108
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Floating point: examples

For example,

1 ∈ F(b = 1) ⊆ F(b = 2) ⊆ . . . ,

and ⟨1b=1, bit(m = 1), bit(e = 0)⟩ = 1 + 1 + 1 = 3. Also,

2−100 ∈ F(b = 1) ,

and ⟨1b=1, bit(m = 1), bit(e = 100)⟩ = 1 + 1 + ⌈log(100)⌉ = 9.
Lastly,

1 − 2−100 = (2100 − 1)2−100 ∈ F(b = 2100) ,

but
⟨11, bit(1 − 2100), bit(100)⟩ = 1 + ⌈log(2100)⌉+ ⌈log(100)⌉ = 108.
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Floating point: probabilities

Definition (Floating point probabilities)
For b ≥ 1, define the set of probability measures represented by
floating point weights by

P[b] :=
{

p ∈ ∆([n]) : n ∈ N ∃w ∈ F(b)n pk =
wk∑

ℓ∈[n] wℓ

}
.

Definition (Closeness)
We say that x, y ∈ [0, 1] are (b, k)-close if

δ(x, y) := max(x, y)
min(x, y) − 1 ≤

(
1

1 − 2−b+1

)k
− 1 .
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Floating point: representability

Lemma
Consider a probability distribution q ∈ ∆([k]). Then, there exists a
probability distribution p ∈ P[b] such that

δ(q, p) ≤
(

1
1 − 2−b+1

)2k+2
− 1 ,

i.e. they are (b, 2k + 2)-close.
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Sketch proof

Game G

Safety MDP G⟨σ⟩

MC G⟨σ⟩,τ(⟨σ⟩)

valG⟨σ⟩,τ(⟨σ⟩)(·)

Reachability MDP G⟨τ⟩

MC Gσ(⟨τ⟩),⟨τ⟩

valGσ(⟨τ⟩),⟨τ⟩(·)

decide ⟨σ⟩, ⟨τ⟩ are ε-optimal

guess ⟨τ⟩

ask σ(⟨τ⟩)

approximate

guess ⟨σ⟩

ask τ(⟨σ⟩)

approximate
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Reachability for Markov Chains

vstart

0 1

1 − p
p
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Reachability for Markov Chains

vstart u

0 1

1 − p

p

1 − q
q
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Reachability for Markov Chains

vstart u

0 1

1 − p

p

1 − 2q

q q
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Reachability for Markov Chains: Algorithm

Theorem ([FM13, Theorem 4])
There is a polynomial time algorithm that takes input

Markov Chain with n states
with transition probabilities in P[b], with b ≥ 1000n2

operates with only multiplication, addition and division and
outputs reachability probabilities with error at most 80n42−b.
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Concurrent Reachability Games: Existence of guess

Theorem ([CHI17, Theorem 14])
Consider a concurrent reachability game with n states, m actions
per state, and transition probabilities that are rational numbers
defined using at most B bits. Then, for all ε > 0, both players have
an ε-optimal stationary strategy with denominators of at most

1
ε
log

(
1
ε

)
2nBmO(n2)

.
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Sketch proof

Game G

Safety MDP G⟨σ⟩

MC G⟨σ⟩,τ(⟨σ⟩)

valG⟨σ⟩,τ(⟨σ⟩)(·)

Reachability MDP G⟨τ⟩

MC Gσ(⟨τ⟩),⟨τ⟩

valGσ(⟨τ⟩),⟨τ⟩(·)

decide ⟨σ⟩, ⟨τ⟩ are ε-optimal

guess ⟨τ⟩

ask σ(⟨τ⟩)

approximate

guess ⟨σ⟩

ask τ(⟨σ⟩)

approximate
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Can we get rid of the oracle?
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